
MATHEMATICS OF COMPUTATION 
Volume 67, Number 224, October 1998, Pages 1727-1733 
S 0025-5718(98)01002-3 

INFINITE FAMILIES 
OF SOLUTIONS OF THE EQUATION (n) = 2(a) 

P. GOETGHELUCK 

ABSTRACT. We give explicit formulas providing two new infinite families of 
couples of binomial coefficients whose ratio is 2. 

1. INTRODUCTION 

For every positive integer r we have (2r,) 2(2,r- 1) so (n, k, a, b) 
(2r, r, 2r - 1, r-1) (r = 1, 2,3, .... ) is a family of solutions of the equation 

(1) (k) = 2 
a 

where n, k, a, b are unknown integers (we can assume, without loss of generality, 
that k < n/2 and b < a/2). 

Are there any other solutions or family of solutions of equation (1)? Partial 
answers to this question can be found in [1], [4],49] and [11]. 

It should be noted that a simple application of Siegel's theorem [7, Th. 22, 
p. 278], implies that for any fixed k > 2 and b > 2 with k + b > 4, there are only 
finitely many solutions n, a to equation (1). 

D. Singmaster [10] found an infinite family of solutions of the equation (n) (a) 

in terms of Fibonacci numbers, and more recently B. M. M. de Weger [12] gave 
some complementary results, in particular on rational solutions of (n) = (a). 

In the present note the search for solutions of (1) is made using the same method 
as Singmaster in [10]: 

1) A computer search is made, producing a list of solutions. 
2) Computer solutions are examined. Some of them are proved to belong to 

infinite families by solving Pell's equations. 
Singmaster performed his computer search for solutions of (n) = (a) with the 

exact value of binomial coefficients. So he was limited by the size (248) of integers 
implemented on the computer. In the present work the computations involving bi- 
nomial coefficients use only the factorization of the number instead of its numerical 
representation: 

if (k) - 2c13 25a3 ... (there are no primes p > n in the factorization), 
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Using this process, computer searches were made in the following domains, where 
binomial coefficients can be very big: 

* n < 100, a < 10000, 
* n < 1000, a < n + 1000, 
* for particular values of k and b. 

In the next section we give the main results: examining first a list of computer 
solutions of (1), we find three obvious infinite families of solutions, and we are led 
to solve Pell's equations providing two nonobvious infinite families of solutions. In 
Section 3, we exhibit another infinite family of solutions, which is easily deduced 
from the results of Section 2. Section 4 is devoted to explaining the process of 
factorization of binomial coefficients. In Section 5 we present and discuss some 
finite families of solutions. 

Let us note that for any given integer A the equation (n) = \(a) can be investi- 
gated by the same method. 

2. INFINITE FAMILIES OF SOLUTIONS 

In this section a list of computer solutions of equation (1) is examined. Some of 
them clearly belong to obvious infinite families of solutions. Others are solutions 
of (n) = 2 (a) and (n-1) = 2(n). Solving completely these two equations produces 
two new nontrivial infinite families of solutions. 

2.1. Obvious solutions. The computer search gave many numerical solutions, 
such as 

21 2 10 (4) 2 (31 63 2 (2 
8 
4 2 (7)*- 

(1) (1) 23 1 )' 22 4 3 ' () (1) 

421 = 0 22 6 (5) 83 14 8 2) 11 28(3) 

belonging to the three obvious infinite families of solutions described by the follow- 
ing formulas: 

(2r) 2(2r- 1) (r= 1,2,...), 

(/c) = 2r = 2(1) (r = 1,2,...), 

(3-1 2(r ) (r =1,2, ...) 

2.2. Infinite family of solutions of (n) = 2 (a). By computer search we have 
found the following three numerical solutions: 

(2) 2( ), (120) =285) (697) = 2(493) 

Thus, we are led to wonder if the equation (n) 2(2a) has any other solution. 
We put a = n - c (O < c < n). The equation (n) 2(nT-c) is equivalent to 

n2 _ n(4c + 1) + 2(C2 + c) =0, giving n = (4c + 1 + 8C2+ 1)/2 (since n > c). 
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Thus n is an integer if and only if 8c2 + 1 is a square, and we must solve the 
Pell's equation 

(2) x2- 8C21 

The least positive integers satisfying (2) are (x, c) = (3, 1), and then (see [8, Th. 
4.4, p. 118]) all positive solutions (xi, ci) of (2) are given by 

xi +c i V= ( 3 +V8) (i = 1, 2,3, ...) 

or equivalently 

xl = 3, cl=1, xi+ = 3xi + 8ci, ci+l = xi + 3ci (i = 1, 2,3 ). 

By a straightforward calculation, the following induction formulas provide all solu- 
tions (ni, ai) of the equation (n) = 2(a): 

(ni, a,) = (4,3), (n2, a2) = (21,15), 

(ni+2, ai+2) =6(ni+, ai+?)-(ni, ai)-(2,2) (i = 1,2,3, ..). 
The computer search found the first four solutions (4, 3), (21, 15), (120, 85), 
(697,493); the next are (4060,2871), (23661, 16731), .... 

2.3. Infinite family of solutions of 
MI= 2k() The computer search also 

gave the following two numerical solutions: 

43 2 44 614) = 2 615) 
(12) (11' ~(165) (164)' 

leading to the study of the equation (MI) 2 (3. 
This equation is equivalent to n2 _ n(4k + 3) + (k2 + k) - 0, whose solution 

satisfying n > k is n = (4k + 3 + +/12k2 + 20k +.9)/2. 
Thus n is an integer if and only if 12k2 + 20k + 9 is a square, and we are led to 

solve 

12k2 + 20k + 9 =x2 

The positive solution of the last equation is k = (-5 + 3/6x2-2)/6, and k is an 
integer if and only if 

(3) 3x2 -2 =y2, y-5 (mod 6). 

Since (2, 1) and (1, 1) are the least positive solutions of the equations z2 - 3t2 = 1 
and z2 -3t2 = -2, respectively, an infinite family of solutions (zi, ti) of z2-3t2 = -2 
(see [6, Th. 8.8, p. 148]) is given by 

zi +tj 3_= (1 + v-) (2 + 3)' (i = 0,1,12,...) 

or equivalently 

(zo,to) = (1,1), (zi,ti) = (5,3), 

(Zi+2, ti+2) = 4(zi+, ti+,)-(Zi, tj) (i= 0, 1, 2, ..). 

These induction formulas show that zi ( 1)i (mod 6). Then an infinite family of 
solutions of (3) is (Yi, xi) = (z2i-l, t2i-1) (i = 1, 2,3,... ), which can be described 
by 

(yi, xi) = (5, 3), (Y2, x2)= (71, 41), 

(Yi+2, xi+2)= 14(yi+I, xi+,) - (yi, xi) (i = 1, 2, 3, ...). 
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The corresponding solutions (ni, ki) of (njI) = 2(n) satisfy ki (yi - 5)/6 and 
ni = (4ki + 3 + xi)/2, and then are given by 

(ni,ki) = (3,0), (n2,k2)= (44,11), 

(ni+2, ki+2) = 14(ni+1, ki+) )-(ni, ki) + (2,10) (i= 1,12,3, ..). 

The computer search found (nl,-ki) = (3,0), (n2,k2) = (44, 11), and (n3,k3) = 

(615,164). The next two solutions are (8568, 2295) and (119339, 31976). 

3. ANOTHER INFINITE FAMILY OF SOLUTIONS 

3.1. Equivalent solutions. If for some n,a and k we have (n) = 2 (a), then 
multiplying both sides by kr(n-k) yields 

(fti) 2(ft). n -a n- a 

We say that corresponding solutions (n, k, a, k) and (n, n - a, n - k, n - a) are 
equivalent. 

3.2. Application. We have found the following three numerical solutions 

(21) 2 (19) (120) = 2 (1) (697= 2 695) 
6 6 ~~ 35 ) 35 ~~204J \204/' 

which are clearly equivalent to th.e solutions 

(2)= 2Q15) E20) =2(85 (697) 2(493) 

of subsection 2.2. 
More generally, if (n, k, a, b) = (n, 2, a, 2) is a solution of (n) - 2 (), then 

(n, n - a, n - 2, n - a) is another solution of this equation. So the infinite family of 
solutions found in subsection 2.2 provides a new infinite family (ni, ui, ni -2, ui) of 
equivalent solutions given by the following induction formulas: 

(n, , ul) = (4,1), (n2,U2) = (21,6), 

(ni+2, ui+2) = 6(ni+, ui+? )-(ni, ui)-(2,0) (i 1,2,3,...). 

The computer search found the first four solutions (4,1), (21, 6), (120, 35), (697, 204); 
the next are (4060,1189), (23661,6930), .... 

4. EXPANSION OF A BINOMIAL COEFFICIENT INTO PRIMES 

We denote by Ep((n, k) the power of the prime p in the expansion of (n) into 
primes. The basic result is the following: 

Theorem (Kummer, 1852 [5, p. 115]). For any prime p and any integers n and k 
(0 < k < n), Ep(n, k) is equal to the number of borrow(s) in the subtraction n - k 
in base p. 

Some immediate consequences make Kummer's theorem easy to apply: 
* If p > n, then Ep(n, k) = 0. 
* If 2k<n and n-k<p<n, then Ep(n,k) =1. 
* If 2k < n and <p< f -k, then Ep(n, k) = 0. 
* If 2k < n and fln < p < n, then Ep(n, k) = O or 1, and Ep(n, k) = 1 if and 

only if n mod p < k mod p. 
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k 
400 - 

III 

0 400p 

FIGURE 1. The set of all (p, k) such that p is prime and divides (4k0) 

To get the expansion of (n) into primes we need a table of primes up to n. Then, 
under the assumption n > 4 and 2k < n, the computation is made according to the 
following scheme: 

if 2 < p < v/;S, Ep(n, k) = number of borrow(s) 

in the subtraction n - k in base p; 

if / < p < n/2, Ep(n, k) = 0 if k mod p < n mod p and 

Ep(n, k) = 1 if k modp > n mod p; 

if n/2 < p < n-k, Ep(n, k) = 0; 

if n -k < p < n, Ep(n, k) = 1; 

if n < p, Ep (n, k) = O. 

A detailed algorithm for computing the factorization of (n) into primes can be 
found in [2]. 

Using a PC with a 66mhz 486 CPU, the computation of the factorization of 
(n) spends less than 3. 10-4 second if n < 1000 and less than 2 * 10-3 second if 
n < 1000Q. 

Application. 1) Obviously, in the computer search, instead of comparing values, 
we compare the factorizations of (k) and 2 (a). 

2) Suppose that for given n and k, we search for a solution of (1) with a < n. 
If there are primes in the interval (n - k, n], let p be the greatest of them. By the 
second consequence of Kummer's theorem, p divides (n), and therefore, p divides 
(a). Then p < a < n. If we now search for a solution of (1) with a > n, an 
analogous proof shows that for any prime q satisfying n < q < a we must have 
b < a - q. 

Then the computer search is restricted to very few binomial coefficients. 
Figure 1 gives a geometric illustration of these results. For a given n (here 

n = 400), the figure is drawn by plotting every (p, k) such that p is prime and 
divides (n). (The structure of the pattern, which is the same for any n, is explained 
in [3]). So, to get the list of primes p dividing (n) we need only to draw a horizontal 
line at ordinate k and collect abscissas where it meets vertical segments. 

These remarks explain why we find only very few solutions to equation (1). 
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5. FINITE FAMILIES OF SOLUTIONS 

5.1. A list of solutions. Besides the members of infinite families of solutions of 
Sections 2 and 3, the numerical computation also found that: 

a) (3) = 2Q), (1) = 2 (15) (11) 22 

(25) = 2 30 (378), (34) = 2(58), 

b) (1=2(1 2 

b \34J =235) 

c (425) = 12 (273) (18) 

These solutions are listed here according to the following classification: 
Type a. Solutions (n) = 2 (a). 

Type b. Solutions (n) = 2(n-2) 

Type c. Solutions (n) = 2(6b)- x2 k2bI 
Special programs have been written to exhibit other results of these three types. 

None of them gave any new solution. 

5.2. Remarks. 

5.2.1. We have no explanation of the fact that there are so many solutions of 
type a. However we remark that for these solutions (a ) and n have "many" prime 
factors. 

5.2.2. If we take u = n - k - 1 and v = k + 1, then (n) = 2(n-2) is equivalent to 
the equation 2u3 -vu2 - (2v2 - v + 2)u - (v3 - v2) = 0 or 2u3 - vu2 - 2v2u -V3 = 

2u - uv - v2. The fact that the polynomial 2x3 -9 - 2x - 1 has no rational roots 
implies that there are only finitely many solutions of type b (this is an application 
of the following result [7, p. 278] established by Schinzel: let f and g be two 
polynomials with integer coefficients satisfying deg(f) > 2, deg(g) < deg(f) and f 
irreducible in the rational field; then the equation f (u, v) g g(u, v) has only a finite 
number of integer solutions). 

The computation shows that (~85) = 2(83h) is the only solution of type b for 
n < 106. 

5.2.3. Since (n) = 2(a) gave many solutions, we have investigated the equation 
(n) = 2(a) (k > 2). This equation has only a finite number (possibly zero) of 
solutions, and, as seen in subsection 3.1, is equivalent to the equation 

(ni) 2(fl). n -a n- a 

Then, when seeking solutions, we can assume that n - a < k. 
A computer search shows that there are no solutions in the domains 
* 3<k<40, n< 106, n-a<k; 
* n < 30000, n-a < k. 
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